

Typical concentrations of air pollutants, air quality guidelines and standards

Presentation
by
Dieter Schwela
Stockholm Environment Institute, University of York

Malé Declaration: Workshop on Air Quality and Health Impacts

19-22 February 2007, Bangkok, Thailand

Learning objectives

- Understanding the magnitude of concentrations of the key air pollutants in outdoor and indoor environments
- Understanding rationale and objectives for setting air quality standards
- Some international guidelines and standards

Annual average smoke and sulphur dioxide concentrations in London

Annual TSP concentrations in Bangkok

Annual PM10 concentrations in Bangkok

Annual SO₂, NO_x, O₃ concentrations in Busan, ROK

Annual average SPM and RSP concentrations in Kolkata

Urban pollution in Asia - in excess of current European concentrations

Chongqing, China, SO₂ (µg.m⁻³)

Range of daily average values	Annual Average
16 - 1711	321
16 - 576	183
1 - 613	156
	average values 16 - 1711 16 - 576

 SO_2 concentrations between 10 to 14 μ g / m³

Urban Particulate Matter

Particulate matter one of the major air pollution causes of mortality and morbidity

PM₁₀ and PM_{2.5} used to characterise exposure

About 62 million people live in these cities in India

Indoor Air Pollution: women and children are particularly at risk

More research to give reliable estimates of health burden Currently a large uncertainty and lack of data exists

Indoor Air Pollution: biomass burning increases outdoor concentrations also

Range of annual concentrations for key pollutants

Compound	Outdoor environment		Indoor environment
	Urban	Background	with open burning
SO ₂	< 100	< 3	
NO ₂	< 150	5	
O ₃	< 400	40-90	
СО	< 10,000	< 2,000	
TSP	50-700	< 10	100-20,000
PM ₁₀	20-500	≤ 1	
PM _{2.5}	10-200	≤ 1	
Pb	0.01-2	< 0.001	
Units in µg/m ³			

Air pollution management model

Rationale and objectives for air quality standards

- Air pollution is known to cause adverse health and environmental effects
- In order to protect human health, ambient air pollutant concentrations have to be limited to values at which adverse health effects have a negligible or an acceptable risk
- In order to protect the environment, similar limits have to be applied
- Air quality standards are intended to protect human health and the environment if enforced
- Air quality standards are values for air quality promulgated by governments

Phases of standard setting

- Risk assessment criteria document
 Hazard characterisation
 Risk characterization
 Effects assessment
 Exposure -response relationships
 Uncertainty factors
 Guidelines
- Applying criteria documents to set standards
 Consideration of the other factors

Criteria documents

- IPCS Environmental Health Criteria
- WHO: Air Quality Guidelines
- RIVM: Concentrations of no concern
- US ATSDR: Minimal risk Levels
- US EPA: Air Quality Criteria
- EU: Technical Guidance Documents
- Health Canada: Guidelines for the Preparation of Health Risk Assessment

World Health Organization

WHO air quality guidelines
global update
2005
Report on a Working Group meeting,
Bonn, Germany, 18-20 October 2005

Nature of air quality guidelines

Aim:

To provide a basis for protecting public health from adverse effects of environmental pollutants, and for eliminating or reducing to a minimum, contaminants that are known or likely to be hazardous to human health and well-being.

- Provision of background information and guidance to governments in making risk management decisions, particularly in setting standards
- Assistance in carrying out local control measures
- No green light for pollution
- Levels below which lifetime exposure or exposure for a given averaging time does not constitute a health risk, but
- Short-term exceedances of guideline values are no catastrophe
- Provision of risk estimates for PM, O₃ and carcinogens

Guidelines and guideline values

- A guideline for air quality is any relationship between exposure and health effect, i.e. an exposure-response relationship
- A guideline value is a fixed concentration at and below the risk of any health effect is very small

Criteria used in establishing air quality guidelines

Distinction between: absolute safety and acceptable risk

Absolute safety: detailed knowledge of

Dose-response relationships;

Types of toxic effects elicited by specific pollutants;

Existence of "thresholds";

Significance of interactions;

Variation in sensitivity and exposure levels within human population.

Acceptable risk:

Tolerated or unavoidable;

Not equally distributed within a population.

Criteria common to Non-carcinogens and Carcinogens

Available data on

Sources, levels, routes of exposure:

Air - Water - Food; Urban, non-polluted rural areas, indoor, workplace; Uptake by inhalation, ingestion, dermal contact.

Kinetics and metabolism:

Body-burden from long-term, low-level exposure; Mode of toxic action; Metabolites with greater toxic potential than original agent.

Criteria for Non-carcinogens

Lowest-observed-adverse-effect-level (LOAEL)

Lowest-observed-effect-level (LOEL)

No-observed-effect-level (NOEL)

Uncertainty factors

Averaging times

Risk considerations (Exposure-response relationships)

Criteria for selection of a LOAEL

Difficulties in distinguishing:

Adverse - non-adverse effect

Definition:

An adverse effect is "any effect resulting in functional impairment and/or pathological lesions that may affect the performance of the whole organism or which contributes to a reduced ability to respond to an additional challenge".

Significant degree of subjectivity and uncertainty!

Criteria for selection of uncertainty factors

Uncertainty factor = safety factor = protection factor = margin of protection = margin of safety;

Variety of uncertainties:

Undetected effects on particular sensitive subgroups;

Synergistic effects of multiple exposures;

Adequacy of existing data (number of mutually supportive scientific observations);

Extrapolation from animals to humans;

Extrapolation from small groups to the population.

Uncertainty factors are based on

Scientific judgement; Interplay of various criteria; Diverse in magnitude.

Complex decision process.

Exceeding a guideline value with an incorporated uncertainty factor does not necessarily mean that adverse effects will result; however risk will increase.

Criteria for selection of averaging times

Complex time-concentration interrelationships

Acute, minor, reversible effects after brief exposure;

Irreversible or incapacitating effects after prolonged exposure;

Short-term averaging times;

Long-term averaging times

Air quality guideline values for non-carcinogenic compounds (~ 50)

Compound	Guideline value	Averaging
	$[\mu g \text{ m}^{-3}]$	time
Carbon monoxide	100 000	15 min
	60 000	30 min
	30 000	1 h
	10 000	8 h
Nitrogen dioxide	200	1 h
	40	1 a
Ozone	120	8 h
Sulphur dioxide	500	10 min
_	125	24 h
	50	1 a

WHO (2000)

Relationship of PM10 with different health effect indicators

WHO 2000/2006)

Increase in daily mortality as a function of PM concentration

Criteria for Carcinogens

Qualitative assessment: how likely an agent is a human carcinogen?

Quantitative assessment of the cancer rate the agent is likely to cause at given levels and exposure.

Classification criteria of IARC in qualitative assessment:

Proven human carcinogens: Risk estimates Group 1:

Group 2:

Probable human carcinogens Limited evidence of carcinogenicity in **Group 2A:**

humans; Sufficient evidence of

carcinogenicity in animals;

Risk estimates

Group 2B: Inadequate evidence of carcinogenicity in

humans;

Guidelines based on non-cancer endpoints

Unclassified chemicals Group 3:

Quantitative assessment

Extrapolation from occupational studies

Extrapolation from animal studies

to the general population

Extrapolation in dose-response relationships from high dose levels to low dose levels

Extrapolation dependent on extrapolation model

Unit risk model

Definition:

Unit risk is the additional lifetime cancer risk occurring in a hypothetical population in which all individuals are exposed continuously from birth throughout their lifetimes to a concentration of 1 μ g m⁻³ of the agent in the air they breathe.

Unit risk estimates:

- provide the opportunity to compare the carcinogenic potency of different agents;
- can help to set priorities in pollution control;
- avoid reference to the "acceptability" of risk;
- are not equivalent to the true cancer risk.

Quantitative Risk Analysis (QRA)

Assessment method determined by mechanism

Extrapolation model bases on available data

QRA for Group 1 and 2A

Uncertainty factor approach for Group 2B and 3

Exceptions

Arsenic

Route	Air	Food	Water	Tobacco
Daily intake [µg/d]	<0.6	7-273	<20	<2
absorption [µg/d]	< 0.5	6-250	<18	<2

Groups at high exposure risks:

Occupationally exposed in copper smelters

People drinking water with very high concentrations

Children living in the vicinity of copper smelters

IARC: 1

Critical effect: Lung cancer

Risk assessment: Relative risk ~ cumulative arsenic dose in

workers

Unit risk: 1.5· $10^{-3} [\mu g \text{ m}^{-3}]^{-1}$

Polycyclic aromatic hydrocarbons

Route	Air	Food	Water	Tobacco
Daily intake [µg/d]	~0.1	~5	~0.02	~1
absorption [µg/d] ~0.0	5 ~2.5	~0.01	< 0.5	

Groups at high exposure risks:

Occupationally exposed coke oven workers

IARC: 2A (Benzo(a)pyrene, BaP)

Critical effect: Lung cancer

Risk assessment: Linearized multistage model for BaP

exposure in coke oven workers

Unit risk for BaP: 8.7 · $10^{-2} [\mu g \text{ m}^{-3}]^{-1}$

Unit risk estimates and concentrations associated with a lifetime cancer risk of 10⁻⁵ for carcinogenic compounds (~30)

Compound	Unit risk [µg m ⁻³] ⁻¹	Lifetime risk conc. [µg m ⁻³]
Arsenic	1.5 • 10-3	0.007
Benzene	6 • 10-6	1.7
Chromium (VI)	4 • 10-2	0.00025
ETS	1 • 10-3	0.01
Nickel	3.4 • 10-4	0.03
PAH (BaP)	8.7 • 10-2	0.00011
TCE	$(0.9-4.3) \cdot 10^{-7}$	23.2-111

WHO air quality guideline values 2005

Pollutant	Averaging time	AQG value 2005 (2000) [µg/m³]
PM _{2.5}	1 year	10
	24 hours (99-percentile)	25
PM ₁₀	1 year	20
	24 hours (99-percentile)	50
O ₃	8 hours, daily maximum	100 (120)
NO ₂	1 year	40
	1 hour	200
SO ₂	24 hours	20 (125)

Paradigm shift in setting PM guideline values

Air quality guideline values and standards

- A careful distinction is necessary
- Very often even experts do not distinguish between air quality guidelines and standards

Guideline values versus standards

- Guideline values are health- (or environment-) based levels, not standards per se
- In setting standards, additional factors may be considered, e.g.:
 - (a) Prevailing exposure levels
 - (b) Environmental conditions
 - (c) Social, economic and cultural condition
- Standards may be above/below guidelines

Setting standards: Factors to consider

- Natural background contamination (e.g. high natural PM)
- Geophysical and meteorological factors:
 - Temperature extremes
 - Humidity extremes
 - Altitude
- Socioeconomic factors

Setting standards: Policy options

- Which proportion of the general population should be protected?
- Which susceptible groups should be protected?
 And how?
- Protection vs. alert/action levels
- Source control, abatement measures, early warning measures

Setting standards: Some problem areas

- Susceptible population groups
- Environmental levels are already effect levels
- At every pollutant level, a proportion of the population will be affected

Standards in environmental and occupational health

- Air quality standards
 Wider range of ages
 Wider range of health states
 Greater susceptibility
 Community involvement
 24 hour continuous exposure
- Occupational standards
 Healthy workers
 Employers involvement
 8 hour exposure

24-hour standards for SO₂

Air quality standards for 24-hour PM_{10} [µg/m³]

US EPA air quality standards

Pollutant	Averaging time	AQS [µg/m³]
PM _{2.5}	1 year	15
	24 hours	65
PM ₁₀	1 year	50
	24 hours	150
O_3	8 hours, daily maximum	160
NO ₂	1 year	100
SO ₂	1 year	80
	24 hours	370

EU air quality limits

Pollutant	Averaging time	AQS [µg/m³]
PM ₁₀	1 year	40
	24 hours	50
O_3	8 hours, daily maximum	120
NO ₂	1 year	40
	1 hour	200
SO ₂	1 year	20
	24 hours	125